FEATURES
- BALANCED OUTPUT
- LOW DISTORTION: 0.0005% at f = 1kHz
- WIDE OUTPUT SWING: 17Vrms into 600Ω
- HIGH CAPACITIVE LOAD DRIVE
- HIGH SLEW RATE: 15V/µs
- WIDE SUPPLY RANGE: ±4.5V to ±18V
- LOW QUIESCENT CURRENT: ±5.2mA
- 8-PIN DIP, SO-8, AND SOL-16 PACKAGES
- COMPANION TO AUDIO DIFFERENTIAL LINE RECEIVERS: INA134 and INA137
- IMPROVED REPLACEMENT FOR SSM2142

APPLICATIONS
- AUDIO DIFFERENTIAL LINE DRIVERS
- AUDIO MIX CONSOLES
- DISTRIBUTION AMPLIFIERS
- GRAPHIC/PARAMETRIC EQUALIZERS
- DYNAMIC RANGE PROCESSORS
- DIGITAL EFFECTS PROCESSORS
- TELECOM SYSTEMS
- HI-FI EQUIPMENT
- INDUSTRIAL INSTRUMENTATION

DESCRIPTION
The DRV134 and DRV135 are differential output amplifiers that convert a single-ended input to a balanced output pair. These balanced audio drivers consist of high performance op amps with on-chip precision resistors. They are fully specified for high performance audio applications and have excellent ac specifications, including low distortion (0.0005% at 1kHz) and high slew rate (15V/µs).

The on-chip resistors are laser-trimmed for accurate gain and optimum output common-mode rejection. Wide output voltage swing and high output drive capability allow use in a wide variety of demanding applications. They easily drive the large capacitive loads associated with long audio cables. Used in combination with the INA134 or INA137 differential receivers, they offer a complete solution for transmitting analog audio signals without degradation.

The DRV134 is available in 8-pin DIP and SOL-16 surface-mount packages. The DRV135 comes in a space-saving SO-8 surface-mount package. Both are specified for operation over the extended industrial temperature range, –40°C to +85°C and operate from –55°C to +125°C.
SPECIFICATIONS: \(V_S = \pm 18V \)

At \(T_A = +25^\circ C, V_S = \pm 18V, R_L = 600\Omega \) differential connected between \(+V_O\) and \(–V_O\), unless otherwise noted.

Audio Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Harmonic Distortion + Noise TRD+N</td>
<td>(f = 20Hz \text{ to } 20kHz, V_O = 10V_{rms})</td>
<td>0.001</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>(f = 1kHz, V_O = 10V_{rms})</td>
<td>0.0005</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Noise Floor, RTO(^{(1)})</td>
<td>20kHz BW</td>
<td>–98</td>
<td></td>
<td></td>
<td>dBu</td>
</tr>
<tr>
<td>Headroom, RTO(^{(1)})</td>
<td>THD+N < 1%</td>
<td>+27</td>
<td></td>
<td></td>
<td>dBu</td>
</tr>
</tbody>
</table>

Input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Impedance(^{(2)})</td>
<td>(Z_{in})</td>
<td>10kΩ</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>Input Current (I_{in})</td>
<td>(V_{in} = \pm 7.07V)</td>
<td>–700</td>
<td></td>
<td>1000</td>
<td>µA</td>
</tr>
</tbody>
</table>

Gain

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential</td>
<td>(\frac{[(+V_O) – (–V_O)]}{V_{in}})</td>
<td>5.8</td>
<td>6</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Initial</td>
<td>(V_{in} = \pm 10V)</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Error</td>
<td>(\pm 0.1 \pm 2)</td>
<td></td>
<td></td>
<td></td>
<td>ppm/°C</td>
</tr>
<tr>
<td>vs Temperature</td>
<td>(\pm 10)</td>
<td></td>
<td></td>
<td></td>
<td>ppm/°C</td>
</tr>
<tr>
<td>Single-Ended</td>
<td>(V_{in} = \pm 5V)</td>
<td>5.8</td>
<td>6</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Initial</td>
<td>(V_{in} = 5V)</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Error</td>
<td>(\pm 0.7 \pm 2)</td>
<td></td>
<td></td>
<td></td>
<td>ppm/°C</td>
</tr>
<tr>
<td>vs Temperature</td>
<td>(\pm 10)</td>
<td></td>
<td></td>
<td></td>
<td>ppm/°C</td>
</tr>
<tr>
<td>Nonlinearity</td>
<td>0.00003</td>
<td></td>
<td></td>
<td></td>
<td>% of FS</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common-Mode Rejection, (f = 1kHz) OCMR</td>
<td>See OCMR Test Circuit, Figure 4</td>
<td>46</td>
<td>68</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Signal Balance Ratio, (f = 1kHz) SBR</td>
<td>See SBR Test Circuit, Figure 5</td>
<td>35</td>
<td>54</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Offset Voltage, Common-Mode</td>
<td>(V_{OCM}^{(3)}) (V_{in} = 0)</td>
<td>±50</td>
<td>±250</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>vs Temperature</td>
<td>(\pm 150)</td>
<td></td>
<td></td>
<td></td>
<td>µV/°C</td>
</tr>
<tr>
<td>Offset Voltage, Differential</td>
<td>(V_{OD}^{(4)}) (V_{in} = 0)</td>
<td>±1</td>
<td>±10</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>vs Temperature</td>
<td>(\pm 5)</td>
<td></td>
<td></td>
<td></td>
<td>µV/°C</td>
</tr>
<tr>
<td>vs Power Supply</td>
<td>PSRR (V_S = \pm 4.5V \text{ to } \pm 18V)</td>
<td>80</td>
<td>110</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Voltage Swing, Positive</td>
<td>No Load(^{(5)}) (V_{+}^{(5)} = 3)</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Negative</td>
<td>No Load(^{(5)}) (V_{–}^{(5)} = 2)</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Impedance</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Load Capacitance, Stable Operation</td>
<td>(C_L) Tied to Ground (each output)</td>
<td>1</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>Short-Circuit Current</td>
<td>(I_{SC})</td>
<td>±85</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Frequency Response

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small-Signal Bandwidth</td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>(I_{slew})</td>
<td>15</td>
<td></td>
<td></td>
<td>V/µs</td>
</tr>
<tr>
<td>Settling Time: 0.01%</td>
<td>(V_{out} = 10V \text{ Step})</td>
<td>2.5</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Overload Recovery</td>
<td>Output Overdriven 10%</td>
<td>3</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
</tbody>
</table>

Power Supply

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Voltage</td>
<td>(V_S)</td>
<td>±4.5</td>
<td></td>
<td>±18</td>
<td>V</td>
</tr>
<tr>
<td>Voltage Range</td>
<td>(I_{Q})</td>
<td>±4.5</td>
<td>±18</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>(I_{Q} = 0)</td>
<td>±5.2</td>
<td>±5.5</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Temperature Range

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification Range</td>
<td></td>
<td>–40</td>
<td></td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>Operation Range</td>
<td></td>
<td>–55</td>
<td></td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Range</td>
<td></td>
<td>–55</td>
<td></td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>(\theta_{ja})</td>
<td>80</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>8-Pin DIP</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>SO-8 Surface Mount</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>SOL-16 Surface Mount</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>

NOTES: (1) dBu = 20log \((V_{rms}/0.7746) \); RTO = Referred-to-Output.
(2) Resistors are ratio matched but have \(\pm 20\% \) absolute value.
(3) \(V_{OCM} = \frac{[(+V_O) + (–V_O)]}{2} \).
(4) \(V_{OD} = (+V_O) – (–V_O) \).
(5) Ensures linear operation. Includes common-mode offset.
PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS(1)

Supply Voltage, \(V^+ \) to \(V^- \) ... 40V
Input Voltage Range ... \(V^- \) to \(V^+ \)
Output Short-Circuit (to ground) .. Continuous
Operating Temperature ... \(-55^\circ C \) to \(+125^\circ C\)
Storage Temperature ... \(-55^\circ C \) to \(+125^\circ C\)
Junction Temperature .. \(+150^\circ C\)

NOTE: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may affect device reliability.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION(1)

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PACKAGE-LEAD</th>
<th>PACKAGE DESIGNATOR</th>
<th>SPECIFIED TEMPERATURE RANGE</th>
<th>ORDERING NUMBER</th>
<th>TRANSPORT MEDIA, QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV134PA</td>
<td>DIP-8</td>
<td>P</td>
<td>(-40^\circ C) to (+85^\circ C)</td>
<td>DRV134PA</td>
<td>Rails, 50</td>
</tr>
<tr>
<td>DRV134UA</td>
<td>SOL-16 Surface Mount</td>
<td>DW</td>
<td>(-40^\circ C) to (+85^\circ C)</td>
<td>DRV134UA</td>
<td>Rails, 48</td>
</tr>
<tr>
<td>DRV135UA</td>
<td>SO-8 Surface Mount</td>
<td>D</td>
<td>(-40^\circ C) to (+85^\circ C)</td>
<td>DRV135UA/1K</td>
<td>Tape and Reel, 1000</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>DRV135UA/2K5</td>
<td>Tape and Reel, 2500</td>
</tr>
</tbody>
</table>

NOTE: (1) For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or see the TI web site at www.ti.com.
TYPICAL PERFORMANCE CURVES

At \(T_A = +25^\circ C \), \(V_S = \pm 18V \), \(R_L = 600\Omega \) differential connected between \(+V_O\) and \(-V_O\), unless otherwise noted.

TOTAL HARMONIC DISTORTION+NOISE vs FREQUENCY

Differential Mode
- A: \(R_1 = R_2 = R_L = \infty \) (no load)
- B: \(R_1 = R_2 = R_L = 600\Omega \)
- C: \(R_1 = R_2 = \infty, R_L = 600\Omega \)

Single-Ended Mode
- A: \(R_1 = 600\Omega \) (250 ft cable)
- B: \(R_1 = \infty \) (no cable)

System Total Harmonic Distortion+Noise vs Frequency
- A: \(R_1 = R_2 = R_L = \infty \) (no load)
- B: \(R_1 = R_2 = \infty, R_L = 600\Omega \)

HEADROOM—TOTAL HARMONIC DISTORTION+NOISE vs OUTPUT AMPLITUDE

Single-Ended Mode
- 500 ft Cable
- \(R_L = 600\Omega \)

Differential Mode
- No Cable
- \(R_L = \infty \)

DIM INTERMODULATION DISTORTION vs OUTPUT AMPLITUDE

Differential Mode
- BW = 30kHz
- \(R_L = 600\Omega \)

No Cable
- \(R_L = \infty \)
TYPICAL PERFORMANCE CURVES (Cont.)

At $T_A = +25^\circ C$, $V_S = \pm 18V$, $R_L = 600\Omega$ differential connected between $+V_O$ and $-V_O$, unless otherwise noted.

HARMONIC DISTORTION PRODUCTS

- **Differential Mode**
- **No Cable, $R_L = \infty$**
- **500 ft Cable, $R_L = 600\Omega$**

OUTPUT VOLTAGE NOISE SPECTRAL DENSITY

- **OUTPUT VOLTAGE NOISE**

POWER SUPPLY REJECTION vs FREQUENCY

MAXIMUM OUTPUT VOLTAGE SWING

$V_S = \pm 4.5V$ to $\pm 18V$

0.1% Distortion

0.01% Distortion

$R_L = 600\Omega$

Diff Mode
TYPICAL PERFORMANCE CURVES (Cont.)

At $T_A = +25^\circ C, V_S = \pm 18V, R_L = 600\Omega$ differential connected between $+V_O$ and $-V_O$, unless otherwise noted.

OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE

OUTPUT VOLTAGE SWING vs OUTPUT CURRENT

QUIESCENT CURRENT vs SUPPLY VOLTAGE

SHORT-CIRCUIT CURRENT vs TEMPERATURE

DIFFERENTIAL OFFSET VOLTAGE PRODUCTION DISTRIBUTION

COMMON-MODE OFFSET VOLTAGE PRODUCTION DISTRIBUTION

Typical production distribution of packaged units. All package types included.
TYPICAL PERFORMANCE CURVES (Cont.)

At $T_A = +25^\circ$C, $V_S = \pm 18V$, $R_L = 600\Omega$ differential connected between $+V_O$ and $-V_O$, unless otherwise noted.

SMALL-SIGNAL STEP RESPONSE

- $C_L = 100\text{pF}$
 - 50mV/div
 - 2μs/div

- $C_L = 1000\text{pF}$
 - 50mV/div
 - 2μs/div

LARGE-SIGNAL STEP RESPONSE

- $C_L = 100\text{pF}$
 - 5V/div
 - 2μs/div

- $C_L = 1000\text{pF}$
 - 5V/div
 - 2μs/div

SMALL-SIGNAL OVERSHOOT

- vs LOAD CAPACITANCE
 - 100mV Step
 - 0 to 40% overshoot
 - Load Capacitance (pF): 10 to 10k
The DRV134 (and DRV135 in SO-8 package) converts a single-ended, ground-referenced input to a floating differential output with +6dB gain ($G = 2$). Figure 1 shows the basic connections required for operation. Decoupling capacitors placed close to the device pins are strongly recommended in applications with noisy or high impedance power supplies.

The DRV134 consists of an input inverter driving a cross-coupled differential output stage with $50\,\Omega$ series output resistors. Characterized by low differential-mode output impedance ($50\,\Omega$) and high common-mode output impedance ($1.6k\,\Omega$), the DRV134 is ideal for audio applications. Normally, $+V_O$ is connected to $+\text{Sense}$, $-V_O$ is connected to $-\text{Sense}$, and the outputs are taken from these junctions as shown in Figure 1. For applications with large dc cable offset errors, a $10\,\mu F$ electrolytic nonpolarized blocking capacitor at each sense pin is recommended as shown in Figure 2.
Excellent internal design and layout techniques provide low signal distortion, high output level (+27dBu), and a low noise floor (–98dBu). Laser trimming of thin film resistors assures excellent output common-mode rejection (OCMR) and signal balance ratio (SBR). In addition, low dc voltage offset reduces errors and minimizes load currents. For best system performance, it is recommended that a high input-impedance difference amplifier be used as the receiver. Used with the INA134 (G = 0dB) or the INA137 (G = ±6dB) differential line receivers, the DRV134 forms a complete solution for driving and receiving audio signals, replacing input and output coupling transformers commonly used in professional audio systems (Figure 2). When used with the INA137 (G = –6dB) overall system gain is unity.

AUDIO PERFORMANCE

The DRV134 was designed for enhanced ac performance. Very low distortion, low noise, and wide bandwidth provide superior performance in high quality audio applications. Laser-trimmed matched resistors provide optimum output common-mode rejection (typically 68dB), especially when compared to circuits implemented with op amps and discrete precision resistors. In addition, high slew rate (15V/µs) and fast settling time (2.5µs to 0.01%) ensure excellent dynamic response.

The DRV134 has excellent distortion characteristics. As shown in the distortion data provided in the typical performance curves, THD+Noise is below 0.003% throughout the audio frequency range under various output conditions. Both differential and single-ended modes of operation are shown. In addition, the optional 10µF blocking capacitors used to minimize V_OCM errors have virtually no effect on performance. Measurements were taken with an Audio Precision System One (with the internal 80kHz noise filter) using the THD test circuit shown in Figure 3.

Up to approximately 10kHz, distortion is below the measurement limit of commonly used test equipment. Furthermore, distortion remains relatively constant over the wide output voltage swing range (approximately 2.5V from the positive supply and 1.5V from the negative supply). A special output stage topology yields a design with minimum distortion variation from lot-to-lot and unit-to-unit. Furthermore, the small and large signal transient response curves demonstrate the DRV134’s stability under load.

OUTPUT COMMON-MODE REJECTION

Output common-mode rejection (OCMR) is defined as the change in differential output voltage due to a change in output common-mode voltage. When measuring OCMR, V_IN is grounded and a common-mode voltage, V_CM, is applied to the output as shown in Figure 4. Ideally no differential mode signal (V_OD) should appear. However, a small mode-conversion effect causes an error signal whose magnitude is quantified by OCMR.

FIGURE 3. Distortion Test Circuit.

FIGURE 4. Output Common-Mode Rejection Test Circuit.

NOTE: Cable loads, where indicated, are Belden 9452 cable.
SIGNAL BALANCE RATIO

Signal balance ratio (SBR) measures the symmetry of the output signals under loaded conditions. To measure SBR an input signal is applied and the outputs are summed as shown in Figure 5. \(V_{OUT} \) should be zero since each output ideally is exactly equal and opposite. However, an error signal results from any imbalance in the outputs. This error is quantified by SBR. The impedances of the DRV134’s output stages are closely matched by laser trimming to minimize SBR errors. In an application, SBR also depends on the balance of the load network.

![Signal Balance Ratio Test Circuit](image)

FIGURE 5. Signal Balance Ratio Test Circuit.

SINGLE-ENDED OPERATION

The DRV134 can be operated in single-ended mode without degrading output drive capability. Single-ended operation requires that the unused side of the output pair be grounded (both the \(V_O \) and Sense pins) to a low impedance return path. Gain remains +6dB. Grounding the negative outputs as shown in Figure 6 results in a noninverted output signal (\(G = +2 \)) while grounding the positive outputs gives an inverted output signal (\(G = -2 \)).

![Typical Single-Ended Application](image)

FIGURE 6. Typical Single-Ended Application.

For best rejection of line noise and hum differential mode operation is recommended. However, single-ended performance is adequate for many applications. In general single-ended performance is comparable to differential mode (see THD+N typical performance curves), but the common-mode and noise rejection inherent in balanced-pair systems is lost.

CABLE

The DRV134 is capable of driving large signals into 600Ω loads over long cables. Low impedance shielded audio cables such as the standard Belden 8451 or 9452 (or similar) are recommended, especially in applications where long cable lengths are required.

THERMAL PERFORMANCE

The DRV134 and DRV135 have robust output drive capability and excellent performance over temperature. In most applications there is no significant difference between the DIP, SOL-16, and SO-8 packages. However, for applications with extreme temperature and load conditions, the SOL-16 (DRV134UA) or DIP (DRV134PA) packages are recommended. Under these conditions, such as loads greater than 600Ω or very long cables, performance may be degraded in the SO-8 (DRV135UA) package.

LAYOUT CONSIDERATIONS

A driver/receiver balanced-pair (such as the DRV134 and INA137) rejects the voltage differences between the grounds at each end of the cable, which can be caused by ground currents, supply variations, etc. In addition to proper bypassing, the suggestions below should be followed to achieve optimal OCMR and noise rejection.

- The DRV134 input should be driven by a low impedance source such as an op amp or buffer.
- As is the case for any single-ended system, the source’s common should be connected as close as possible to the DRV134’s ground. Any ground offset errors in the source will degrade system performance.
- Symmetry on the outputs should be maintained.
- Shielded twisted-pair cable is recommended for all applications. Physical balance in signal wiring should be maintained. Capacitive differences due to varying wire lengths may result in unequal noise pickup between the pair and degrade OCMR. Follow industry practices for proper system grounding of the cables.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV134PA</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8/50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>DRV134PAG4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8/50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>DRV134UA</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8/50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
</tr>
<tr>
<td>DRV134UA/1K</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>16/40</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
</tr>
<tr>
<td>DRV134UA/1KE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>16/40</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
</tr>
<tr>
<td>DRV134UA/2K5</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8/2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
</tr>
<tr>
<td>DRV135UA/2K5E4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8/2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms “Lead-Free” or “Pb-Free” mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines “Green” to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV134UA/1K</td>
<td>SOIC</td>
<td>DW</td>
<td>16</td>
<td>1000</td>
<td>330.0</td>
<td>16.4</td>
<td>10.85</td>
<td>10.8</td>
<td>2.7</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>DRV135UA/2K5</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV134UA/1K</td>
<td>SOIC</td>
<td>DW</td>
<td>16</td>
<td>1000</td>
<td>346.0</td>
<td>346.0</td>
<td>33.0</td>
</tr>
<tr>
<td>DRV135UA/2K5</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>346.0</td>
<td>346.0</td>
<td>29.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .005 (.13) per end.
⚠️ Body width does not include interlead flash. Interlead flash shall not exceed .010 (.25) per side.
E. Reference JEDEC MS-012 variation AA.
P (R-PDIP-T8) PLASTIC DUAL-IN-LINE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
D. Falls within JEDEC MS-013 variation AA.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to test the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death. Information furnished by TI is believed to be accurate and reliable. However, TI assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties which may result from its use.

Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions

Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless

www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated