KEY FEATURES

- Good power handling (400 w AES)
- Excellent sensitivity (99 dB)
- Extended frequency response (30 - 3500 Hz)
- Neodymium magnets
- Aluminium basket

TECHNICAL SPECIFICATIONS

Nominal diameter 380 mm. 15 in.
Rated impedance 8 ohms
Minimum impedance 5.8 ohms
Power capacity* 400 w AES
Program power 800 w
Sensitivity 99 dB
Frequency range 30 - 3500 Hz
Recom. enclosure vol. 50 / 130 l / 1.75 / 4.59 ft.³
Voice coil diameter 62.4 mm. 2.5 in.
Magnetic assembly weight 2.54 kg. 5.59 lb.
BL factor 17.2 N / A
Moving mass 0.090 kg.
Voice coils 17.5 mm
Air gap height 10 mm
X damage (peak to peak) 27.5 mm

THIELE-SMALL PARAMETERS

Resonant frequency, fs 42 Hz
D.C. Voice coil resistance, Re 5 ohms.
Mechanical Quality Factor, Qms 7.62
Electrical Quality Factor, Qes 0.40
Total Quality Factor, Qts 0.38
Equivalent Air Volume to Cms, Vas 176 l
Mechanical Compliance, Cms 160 µm / N
Mechanical Resistance, Rms 3.11 kg / s
Efficiency, ηo (%) 3.1
Effective Surface Area, Sd (m²) 0.0880 m²
Maximum Displacement, Xmax*** 6.5 mm
Displacement Volume, Vd 572 cm³
Voice Coil Inductance, Le @ 1 kHz 1.7 mH

DIMENSION DRAWINGS

MOUNTING INFORMATION

Overall diameter 388 mm. 15.28 in.
Bolt circle diameter 370 mm. 14.57 in.
Baffle cutout diameter:
- Front mount 349.5 mm. 13.76 in.
- Rear mount 355 mm. 13.98 in.
Depth 156.7 mm. 6.17 in.
Volume displaced by driver 5.5 l 0.19 ft.³
Net weight 3.6 kg. 7.92 lb.
Shipping weight 4.6 kg. 10.12 lb.

FREQUENCY RESPONSE AND DISTORTION

FREE AIR IMPEDANCE CURVE

Note: on axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1w@ 1m.

Notes:
- *The power capacity is determined according to AES2-1984 (2003) standard.
- Program power is defined as the transducer's ability to handle normal music program material.
- **T-S parameters are measured after an exercise period using a preconditioning power test.
- ***The Xmax is calculated as (Lvc - Hag)/2 + Hag/3.5, where Lvc is the voice coil length and Hag is the air gap height.